

SPECIFICATION

宏致電子股份有限公司

桃園縣中壢市東園路13號

No.13, Dongyuan Rd., Jhongli City,

Taoyuan County 320, Taiwan (R.O.C.)

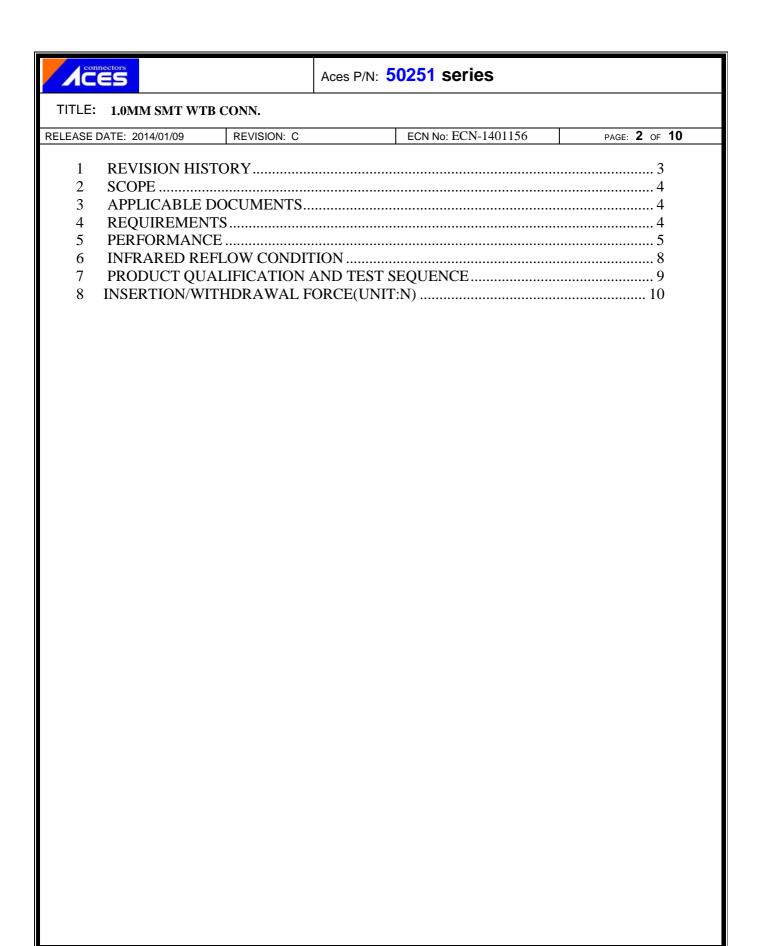
TEL: +886-3-463-2808 FAX: +886-3-463-1800

SPEC. NO.: PS-50251-XXXXXX-XXX REVISION: C

PRODUCT NAME: 1.0mm WTB WAFER SMT TYPE

PRODUCT NO: 50251 Series ; 50252 Series ; 50253 Series ; 50254 Series

50255 Series; 50256 Series; 50257 Series; 50258Series


50260 Series ; 50263 Series ; 50266 Series ; 50418 Series

PREPARED: CHECKED: APPROVED:

Xufei Jerry Jason

DATE: DATE:

2014.01.09 2014.01.09 2014.01.09

CES	Aces P/N: 50251 series
-----	------------------------

TITLE: 1.0MM SMT WTB CONN.

RELEASE DATE: 2014/01/09 | REVISION: C | ECN No: ECN-1401156 | PAGE: **3** OF **10**

1 Revision History

Rev.	ECN#	Revision Description	Approved	Date
0	ECN-0812248	NEW SPEC	Jason	2008.11.27
Α	ECN-0909017	For ADW0909001 Add Hand Soldering	Jason	2009.09.02
В	ECN-1001174	Add 50418 Series &LLCR Initial Data And Modify Salt Spray	Jason	2010.02.26
С	ECN-1401156	ADD WORKING VOLTAGE	Xufei	2014.01.09

TITLE: 1.0MM SMT WTB CONN.

RELEASE DATE: 2014/01/09 REVISION: C ECN No: ECN-1401156 PAGE: **4** OF **10**

2 SCOPE

This specification covers performance, tests and quality requirements for 1.0mm pitch SMT WTB

connector. ACES P/N: 50251 Series; 50252 Series; 50253 Series; 50254 Series;

50255 Series; 50256 Series; 50257 Series; 50258 Series; 50260 Series; 50263 Series;

50266 Series; 50266 Series; 50418 Series;

3 APPLICABLE DOCUMENTS

EIA-364 ELECTRONICS INDUSTRIES ASSOCIATION

4 REQUIREMENTS

4.1 Design and Construction

Product shall be of design, construction and physical dimensions specified on applicable product drawing.

- 4.2 Materials and Finish
 - 4.2.1 Contact: High performance copper alloy

Finish: Pls see P/N LEGEND

4.2.2 Housing: Thermoplastic or Thermoplastic High Temp., UL94V-0

- 4.3 Ratings and Applicable Wire
 - 4.3.1 Working voltage less than 36 volts (per pin)
 - 4.3.2 Voltage: 50 Volts AC (per pin)
 - 4.3.3 Current(Max) and Applicable wires: 28AWG: 1 Amperes (per pin)

30AWG: 1 Amperes (per pin)

32AWG: 1 Amperes (per pin)

4.3.4 Operating Temperature : -25°C to +65°C

CONNECTORS	Aces P/N:	Aces P/N: 50251 series			
TITLE: 1.0MM SMT WTB CONN.					
DELEASE DATE: 2014/01/00	DEVISION: C	ECN No. ECN 1/01156	DACE: 5 OF 10		

5 Performance

5.1. Test Requirements and Procedures Summary

Item	Requirement	Standard
Examination of Product	Product shall meet requirements of applicable product drawing and specification.	Visual, dimensional and functional per applicable quality inspection plan.
	ELECTRICAL	
Item	Requirement	Standard
Low-signal Level Contact Resistance	55 m Ω Max. (initial)per contact 20 m Ω Max. Change allowed	Mate connectors, measure by dry circuit, 20mV Max., 10mA Max. (EIA-364-23)
Insulation Resistance	100 M Ω Min.	Unmated connectors, apply 500 V DC between adjacent terminals. (EIA-364-21)
Dielectric Withstanding Voltage	250 VAC Min. at sea level for 1 minute. No discharge, flashover or breakdown. Current leakage: 1 mA max.	Test between adjacent contacts of unmated connectors. (EIA-364-20)
Temperature rise	30°€ Max. Change allowed	Mate connector: measure the temperature rise at rated current after:1 A/Power contact. The temperature rise above ambient shall not exceed 30°C The ambient condition is still air at 25°C (EIA-364-70 METHOD 2)
	MECHANICAL	
Durability	30 cycles.	The sample should be mounted in the tester and fully mated and unmated the number of cycles specified at the rate of 25.4 ± 3mm/min. (EIA-364-09)
Mating / Unmating Forces	SEE ITEM 8.	Operation Speed: 25.4 ± 3 mm/minute Measure the force required to mate/Unmate connector. (EIA-364-13)
Terminal / Housing Retention Force(Cable Side)	7N MIN.	Apply axial pull out force at the speed rate of 25.4 ± 3 mm/minute. On the Crimping terminal assembled in the housing.

CCES	Aces P/N: 50251 series

TITI E.	1 03/13/	SMT WTR	CONN
	LONIN	SMIWIK	CONN.

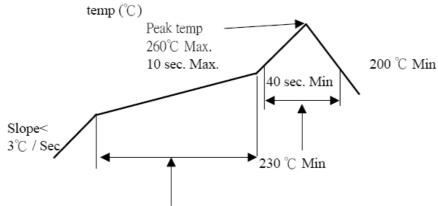
RELEASE DATE: 2014/01/09	REVISION: C	ECN No: ECN-1401156	PAGE: 6 OF 10

Terminal / Housing		Apply axial pull out force at the speed rate of 25.4 ± 3 mm/minute.		
Retention Force(Wafer)	3.5N MIN.	On the terminal assembled in the housing.		
		Apply axial pull out force at the		
Fitting Nail /Housing	5N MIN.	speed rate of 25.4 ± 3 mm/minute.		
Retention Force	or will 4.	On the fitting nail assembled in		
		the housing.		
		The electrical load condition shall		
		be 100 mA maximum for all		
		contacts. Subject to a simple		
		harmonic motion having		
		amplitude of 0.76mm (1.52mm		
		maximum total excursion) in		
		frequency between the limits of		
Vibration	1 μs Max.	10 and 55 Hz. The entire		
		frequency range, from 10 to 55		
		Hz and return to 10 Hz, shall be		
		traversed in approximately 1		
		minute. This motion shall be		
		applied for 2 hours in each of		
		three mutually perpendicular directions.		
		(EIA-364-28 Condition I)		
	MECHANICAL			
Item	Requirement	Standard		
Item	Requirement			
Item	Requirement	Subject mated connectors to 50 G's (peak value) half-sine		
Item	Requirement	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds		
Item	Requirement	Subject mated connectors to 50 G's (peak value) half-sine		
	Requirement	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along		
Item Shock (Mechanical)	Requirement 1 µs Max.	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular		
	·	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18		
	·	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load		
	·	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA		
	·	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts.		
	1 μs Max.	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA		
Shock (Mechanical)	1 μs Max. ENVIRONMENTAL	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A)		
	1 μs Max.	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A)		
Shock (Mechanical) Resistance to Reflow	1 μs Max. ENVIRONMENTAL See Product Qualification and Test	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to		
Shock (Mechanical) Resistance to Reflow	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free)	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles.		
Shock (Mechanical) Resistance to Reflow Soldering Heat	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C,		
Shock (Mechanical) Resistance to Reflow	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free)	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30minutes+65 +3/-0 °C, 30		
Shock (Mechanical) Resistance to Reflow Soldering Heat	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30minutes+65 +3/-0 °C, 30 minutes		
Shock (Mechanical) Resistance to Reflow Soldering Heat	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30minutes+65 +3/-0 °C, 30 minutes (EIA-364-27, test condition A)		
Shock (Mechanical) Resistance to Reflow Soldering Heat Thermal Shock	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test Sequence Group 4	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30minutes+65 +3/-0 °C, 30 minutes (EIA-364-27, test condition A) Mated Connector		
Shock (Mechanical) Resistance to Reflow Soldering Heat Thermal Shock Humidity-	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test Sequence Group 4 See Product Qualification and Test Sequence Group 4	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30 minutes +65 +3/-0 °C, 30 minutes (EIA-364-27, test condition A) Mated Connector 25~65°C,90~95% RH, 10 Cycles		
Shock (Mechanical) Resistance to Reflow Soldering Heat Thermal Shock	ENVIRONMENTAL See Product Qualification and Test Sequence Group 4 (Lead Free) See Product Qualification and Test Sequence Group 4	Subject mated connectors to 50 G's (peak value) half-sine shock pulses of 11 milliseconds duration. Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). The electrical load condition shall be 100mA maximum for all contacts. (EIA-364-27, test condition A) See 6.1 Mate module and subject to follow condition for 10 cycles. 1 cycles: -25 +0/-3 °C, 30minutes+65 +3/-0 °C, 30 minutes (EIA-364-27, test condition A) Mated Connector		

TITLE: 1.0MM SMT WTB CONN.

RELEASE DATE: 2014/01/09 REVISION: C ECN No: ECN-1401156 PAGE: **7** OF **10**

Temperature life	See Product Qualification and Test Sequence Group 8	Subject mated connectors to temperature life at 85°C for 96 hours. Measure Signal. (EIA-364-17, Test condition A)
Salt Spray (Only For Gold Plating)	See Product Qualification and Test Sequence Group 5	Subject mated/unmated connectors to 5% salt-solution concentration at 35°C 1). Gold plated 5u" for 96 hours. 2). G/F for 8 hours. (EIA-364-26,Test condition B)
Hand Soldering	Hand Soldering temperature: 250±5°C,3~4sec at least.	Appearance:No Damage
Solder ability	Solder able area shall have minimum of 95% solder coverage.	Subject the test area of contacts into the flux for 5-10 sec. And then into solder bath, Temperature at 245 ±5 °C, for 4-5 sec. (EIA-364-52)


Note. Flowing Mixed Gas shell be conduct by customer request.

TITLE: 1.0MM SMT WTB CONN.

6 INFRARED REFLOW CONDITION

6.1. Lead-free Process

TEMPERATURE CONDITION GRAPH (TEMPERATURE ON BOARD PATTERN SIDE)

Pre-heat Hold time for $150 \sim 180$ °C is $60 \sim 120$ sec.

connectors	Aces	Aces P/N: 50251 series				
TITLE: 1.0MM SMT WTB (CONN.					
DELEACE DATE: 2014/01/00	DEVICION: C	ECNING. ECN 1401156	5105 O of 10			

7 PRODUCT QUALIFICATION AND TEST SEQUENCE

					Test (Group				
Test or Examination	1	2	3	4	5	6	7	8	9	10
	Test Sequence									
Examination of Product				1 . 7	1 . 6	1 · 4				1 . 3
Low-signal Level Contact Resistance		1 \ 5	1 · 4	2 · 10	2 . 9	2 ` 5				
Insulation Resistance				3 . 9	3 · 8					
Dielectric Withstanding Voltage				4 · 8	4 · 7					
Temperature rise	1									
Mating / Unmating Forces		2 · 4								
Durability		3								
Contact Retention Force										4
Vibration(Random) / Vibration			2							
Shock (Mechanical)			3							
Thermal Shock				5						
Humidity				6						
Temperature life					5					
Salt Spray(Only For Gold Plating)						3				
Solder ability							1			
Terminal / Housing Retention Force									1	
Fitting Nail /Housing Retention Force									2	
Resistance to Soldering Heat										2
Sample Size	2	4	4	4	4	4	2	4	4	4

TITLE: 1.0MM SMT WTB CONN.

8.INSERTION/WITHDRAWAL FORCE(Unit:N)

Number of circuit	At i	At 30th	
	I.F.(MAX)	W.F.(MIN)	W.F.(MIN)
2	20	2	2
4	20	2	2
6	20	2	2
8	20	2	2
10	20	2	2
12	25	3	3
14	25	3	3
16	25	3	3
18	25	3	3
20	25	3	3
22	30	4	4
24	30	4	4
26	30	4	4
28	30	4	4
30	30	4	4
32	35	5	5
34	35	5	5
36	35	5	5
38	35	5	5
40	35	5	5
42	40	6	6
44	40	6	6
46	40	6	6
48	40	6	6
50	40	6	6